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Abstract

This work presents a sample efficient and effective value-
based method, named SMIX(}), for reinforcement learning
in multi-agent environments (MARL) within the paradigm of
centralized training with decentralized execution (CTDE), in
which learning a stable and generalizable centralized value
function (CVF) is crucial. To achieve this, our method care-
fully combines different elements, including 1) removing the
unrealistic centralized greedy assumption during the learning
phase, 2) using the A-return to balance the trade-off between
bias and variance and to deal with the environment’s non-
Markovian property, and 3) adopting an experience-replay
style off-policy training. Interestingly, it is revealed that
there exists inherent connection between SMIX(\) and previ-
ous off-policy Q(\) approach for single-agent learning. Ex-
periments on the StarCraft Multi-Agent Challenge (SMAC)
benchmark show that the proposed SMIX(\) algorithm out-
performs several state-of-the-art MARL methods by a large
margin, and that it can be used as a general tool to improve
the overall performance of a CTDE-type method by enhanc-
ing the evaluation quality of its CVF. We open-source our
code at: https://github.com/chaovven/SMIX.

1 Introduction

Recently, reinforcement learning (RL) has made great suc-
cess in a variety of domains, from game playing (Mnih et al.
2015; Silver et al. 2017) to complex continuous control tasks
(Schulman et al. 2017). However, many real-world problems
are inherently multi-agent in nature, such as network packet
routing (Ye, Zhang, and Yang 2015), traffic light control
(Van der Pol and Oliehoek 2016), and multi-player games
(Jaderberg et al. 2019), which raises great challenges that
are never encountered in single-agent settings.

In particular, the main challenges in multi-agent envi-
ronments include the dimension of joint action space that
grows exponentially with the number of agents (Foerster et
al. 2018; Rashid et al. 2018), unstable environments caused
by the interaction of individual agents (Laurent et al. 2011;
Lowe et al. 2017), and multi-agent credit assignment in co-
operative scenarios with global rewards (Foerster et al. 2018;
Rashid et al. 2018). These challenges make it troublesome
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for both fully centralized methods which consider all agents
as a single meta agent and fully decentralized methods
which individually train each agent by treating other agents
as part of the environment (Tan 1993; Foerster et al. 2017;
2018; Rashid et al. 2018).

Recently the paradigm of centralized training with decen-
tralized execution (CTDE) has become popular for multi-
agent learning (Oliehoek, Spaan, and Vlassis 2008; Krae-
mer and Banerjee 2016; Foerster et al. 2018; Rashid et al.
2018) due to its conceptual simplicity and practical effec-
tiveness. Its key idea is to learn a centralized value function
(CVF) shared by all the agents during training, while each
agent acts in a decentralized manner during the execution
phase. The CVF works as a proxy to the environment for
each agent, through which individual value/advantage func-
tions for each agent can be conveniently learnt by incorpo-
rating appropriate credit assignment mechanism.

Unfortunately, the central role played by the CVF in the
CTDE approach seems to receive inadequate attention in
current practice - it is commonly treated in the same way as
in single-agent settings (Lowe et al. 2017; Rashid et al. 2018;
Foerster et al. 2018; Sunehag et al. 2018), leading to larger
estimation error in multi-agent environments. Furthermore,
to reduce the difficulty of decomposing the centralized value
function to individual value functions, many algorithms im-
pose extra structural assumptions onto the hypothesis space
of the CVF during training. For example, VDN (Sunehag et
al. 2018), QMIX (Rashid et al. 2018), and QTRAN (Son et
al. 2019) assume that the optimal joint action is equivalent
to the collection of each agent’s optimal action.

On the other hand, performing an accurate estimation
of CVF in multi-agent environments is inherently difficult
due to the following reasons: 1) the “curse of dimensional-
ity” (Bellman 1957) of the joint action space results in the
sparsity of experiences; 2) the challenges of non-Markovian
property (Laurent et al. 2011) and partial observability in
multi-agent environments become even more severe than in
single-agent settings; 3) the dynamics of multi-agent envi-
ronments are complex and hard to model, partially due to
the complicated interactions among agents. In practice, these
factors usually contribute to an unreliable and unstable CVF
with high bias and variance.

To tackle these difficulties, this work proposes a new
sample efficient multi-agent reinforcement learning method,



named SMIX()), under the framework of CTDE. The
SMIX(A) improves the centralized value function estima-
tion with an off policy-based CVF learning method which
removes the need of explicitly relying on the centralized
greedy behavior (CGB) assumption (see (1)) during train-
ing, and incorporates the A-return (Sutton and Barto 2018)
to better balance the bias and variance trade-off and to bet-
ter account for the environment’s non-Markovian property.
The particular off-policy learning mechanism of SMIX()) is
motivated by importance sampling but is implemented with
experience replay, which is shown to have close connection
with a previous off-policy Q()\) approach for single-agent
learning. With all these elements, the SMIX(\) method ef-
fectively improves the sample efficiency and stabilizes the
training procedure - on the benchmark of the StarCraft
Multi-Agent Challenge (SMAC) (Samvelyan et al. 2019),
SMIX(A) is demonstrated to achieve state-of-the-art perfor-
mance in selected scenarios. Furthermore, significant perfor-
mance improvements by existing CTDE-type MARL algo-
rithms are observed by replacing their CVF estimator with
the newly proposed SMIX()).

In what follows, after a brief discussion on the charac-
teristics of the hypothesis space of CVF in Section 2, the
proposed SMIX(\) method and its convergence analysis are
respectively described in Section 3 and Section 4. Experi-
mental results are given in Section 5 and we conclude the
paper in Section 6.

2 Background

We consider a cooperative multi-agent task which can
be described as a Dec-POMDP (Oliehoek and Am-
ato 2016). A Dec-POMDP is defined as a tuple:
G=(S,AP,r,Z O,N,), where s € S denotes the true
state of the environment, A is the action set for each of NV
agents, and v € [0,1] is the discount factor. At each time
step, each agent i € {1,2,---, N} chooses an action a’ €
A, forming a joint action a = {a',a?,--- ,a"} € AN,
Then the environment gets into next state s’ through a dy-
namic transition function P(s'[s,a) : S x AV x S
[0,1]. All agents share the same reward function 7(s,a) :
S x AN +— R. We consider a partial observable scenario in
which each agent draws partial observation o € O from the
observation function Z(s,i) : S x N + O. ! Each agent i
also has an observation-action history 7¢ € 7 = (O x A)*,
on which it conditions a stochastic policy. A stochastic pol-
icy is a mapping defined as 7(a|7) : T x A — [0, 1].

In the training phase of the CTDE paradigm, a centralized
action-value function Q([s,7],a) (or simply expressed as
Q(7,a)) is learnt from the local observation history of all
agents (denoted as 7 = {7!,7%, ... 7™}) and the global
state (denoted as s), while during the execution phase, each
agent’s policy 7' only relies on its own observation-action
history 7¢. To simplify notation, we denote joint quantities
over agents in bold. We also omit the index ¢ of each agent
when there is no ambiguity in the following sections.

"Here we condsider a observation function that differs from the
standard Dec-POMDP (Oliehoek and Amato 2016).

Hypothesis Space for Centralized Value Functions

The hypothesis space (or hypothesis set) H is a space
of all possible hypotheses for mapping inputs to outputs
that can be searched (Shalev-Shwartz and Ben-David 2014,
Russell and Norvig 2016). To learn a stable and generaliz-
able CVE, choosing a suitable hypothesis space is of im-
portance, which is not only related to the characteristic of
the problem domain but related to how the learnt system is
deployed as well. In particular, in multi-agent systems, the
joint action space of all agents increases exponentially with
the increase of the number of agents, implying that the hy-
pothesis space of CVF should be large enough to account
for such complexity. Furthermore, to facilitate the freedom
of each agent to make decision based on its local observa-
tions without consulting the CVF, the following centralized
greedy behavior (CGB) assumption is generally adopted:

argmax Q! (7'1, al)
H.l

argmax Qo (7,a) = . (D
a
argmax QV (TN, aN)
aN

This property establishes a structural constraint between the
centralized value function and the decentralized value func-
tions, which can be thought of as a simplified credit assign-
ment mechanism during the execution phase. Figure 1a il-
lustrates how the structural constraints reduce the effective
size of the hypothesis space.

More Constraints

(a) b)

Figure 1: (a) The size of hypothesis space corresponding
to different constraints. (b) The relationship of hypothesis
spaces of different algorithms.

VDN, QMIX and QTRAN

One sufficient condition for (1) is the following non-negative
linear combination:

N
Qtot(T7a; 9) = ZaiQi(Tiaai;Qi)aai Z 07 (2)
=1

where Q:: is the centralized Q) function and Q? is the Q
function for each agent 7. In VDN (Sunehag et al. 2018),
all the combination coefficients «;,7 = 1,2,--- , N are set
to 1. QMIX (Rashid et al. 2018) extends this additive value
factorization to a more general case by enforcing %Q—é?f >
0,7 € {1,---, N}. The following theorem explicitly gives
the consequential structural constraints imposed on the CVF
hypothesis space due to QMIX,



Theorem 1. For OMIX, zf% >0forie{1,2,--- ,N},
then we have

max Qo (T,8) =

Qiot (T, argmax Q' (71, @), - - -, argmax QN (7, aV)).

al a
3)

The proof of this theorem is provided in the Supplementary.
Note that QMIX also relies on this result to simplify its op-
timization procedure.

QTRAN (Son et al. 2019) further relaxes the constraints
of VDN and QMIX and works in a larger hypothesis space
structured by a sufficient and necessary condition of (1), but
at the cost of having to optimize the joint value function in
the whole action space formed by all the agents. Although
a coordinate decent-type method is proposed in QTRAN to
address the issue, the method’s scalability and the range of
practical use can be limited by this. Figure 1b gives an il-
lustration of the relationship among hypothesis spaces for
VDN, QMIX, SMIX(\), and QTRAN. The hypothesis space
of SMIX(]) is further discussed in Section 3.

3 Methods

In this section, we give the details of the proposed SMIX(\)
method, which is a SARSA()) (Sutton et al. 2014) style off-
policy method that aims at learning a centralized value func-
tion within the framework of CTDE for better MARL.

Relaxing the CGB Assumption in Learning

Recall that in a standard CTDE approach, a centralized Q.
function or critic function for all agents is first trained,
whose value is then assigned to the individual agents to
guide the training process of each agent. Typical imple-
mentations of this idea are VDN (Sunehag et al. 2018) and
QMIX (Rashid et al. 2018), in which the centralized Q.
function is learnt through a traditional ()-learning algorithm.
However, due to the high dimensionality of the joint action
space, taking the max of Q. (7, a) w.r.t. a required by Q-
learning update could be untractable. To address this issue,
the aforementioned CGB assumption is explicitly followed
although it is seemingly unrealistic.

Note that this greedy assumption is not only followed by
the @-learning algorithm in its updating rule, but followed
by the classic n-step Q-learning method and Watkins’s Q ()
method (Watkins 1989) as well. Hence to remove our exact
relying on this condition in the learning phase, it is neces-
sary to abandon such updating rule at all when learning the
centralized value function network.

Alternatively, one can use a SARSA (Sutton and Barto
2018)-based method instead of @-learning, where a Bell-
man expectation backup operator is applied to learn the Q¢
function. However, it is an on-policy method and only con-
siders one-step return. In what follows, we will extend this
method to an off-policy setting and integrate it with multi-
step returns to handle the non-Markovian environments.

Off-Policy Learning without Importance Sampling

One way to alleviate the curse of dimensionality issue of
joint action space and to improve exploration is the off-

policy learning. Denoting the behavior policy as p and the
target policy as 7r, a general off-policy strategy to evaluate
the @ function for 7r using data T generated by following 1t
can be expressed as follows (Munos et al. 2016),

Q(r,a) < Q(r,a) + B, | > 7 (Hm) il @
=1

t>0

where each p; is a non-negative coefficient and satisfies
szl pi = 1 when t = 0. The error term J7 is generally
written as the following expected TD-error,

0f =141 +VERQ (Te1,-) — Q (T4, a4), ®)

where E-Q(7,-) = >, w(a|T)Q(7, a).? In particular, for
the importance sampling (IS) method, each p; in (4) is de-
fined as the relative probability of their trajectories occurring
under the target policy 7 and behavior policy pu, also called

importance sampling ratio, i.e., p; = ZE:J;; )

Despite its theoretical soundness, the IS method faces
great challenges under the setting of multi-agent environ-
ments: 1) it suffers from large variance due to the product of
the ratio (Liu et al. 2018), and 2) the “curse of dimension-
ality” issue of the joint action space makes it impractical to
calculate the 7w (a;|7;) even for a single timestep 7, when the
number of agents is large. Previously, Foerster et al. (2017)
proposed a method which effectively addresses the first is-
sue by avoiding calculating the product over the trajectories
but how to solve the second one remains open.

The above analysis highlights the need of exploring alter-
native approaches that are able to perform off-policy learn-
ing without importance sampling in multi-agent settings.

The SMIX()\) Method

To achieve the above goal, our key idea is to further simplify
the coefficient p; in (4), so as to reduce the variance of the
importance sampling estimator and to potentially bypass the
curse of dimensionality involved in calculating 7 (-|7).

Specifically, we relax each coefficient p; = 1.0 in (4) and
use an experience replay memory to store the most recent
off-policy data. Actually, previous work (Fujimoto, Meger,
and Precup 2019) shows that the off-policy experiences gen-
erated during the interaction with the environment tend to be
heavily correlated to the current policy. Their experimental
results also reveal that the distribution of off-policy data dur-
ing the training procedure is very close to the current policy.

Then, we use the A-return (Sutton and Barto 2018) as the
TD target estimator, which is defined as follows:

Gy = (1= alG, (6)
n=1

The policy evaluation strategy of many popular methods can
be expressed as (4), including SARSA()) (Sutton et al. 2014), oft-
policy importance sampling methods (Precup, Sutton, and Das-
gupta 2001), off-policy Q(\) method (Harutyunyan et al. 2016),
tree-backup method, TB(A) (Precup, Sutton, and Singh 2000) and
Retrace(\) (Munos et al. 2016). These methods differ in the defi-
nition of the coefficient p; and error term 67 (Harutyunyan et al.
2016; Munos et al. 2016).



where GE”) = Tey1 + Y42 + -0+
Y'ErQ (Tt4n,at4n;07) is n-step return and 6~ are
parameters of the target network. Plugging this into (4) and
setting p; = 1.0 for all ¢, we have,

Q(r,a) « Q(,a) +E, | Y 7(G} = Q(ri,a1)) |- (D)

t>0

In implementation, SMIX()) is trained end-to-end and the
loss function for the centralized value function Q77 has the
following form:

b
=3 [ = QR (. a:0))%] ®)

=1

where y/°t = G is defined in (6) and is estimated through
experience replaying.

Note that in the training phase, we remove the explicit
structural constraints between the CVF and decentralized
policies by abandoning the ()-learning updating rules, which
makes SMIX()) optimize in a larger hypothesis space than
QMIX (Rashid et al. 2018). While in implementation, the
deep network architecture for Q7 , (7, a;6) in SMIX()) is
the same as that of QMIX except the training objective. This
indicates that SMIX()\) requires that all the weights in the
mixing network be non-negative, which is a sufficient con-
dition of the CGB assumption. Thus, the hypothesis space
of SMIX()) is smaller than QTRAN (cf. Figure 1b). How-
ever, the sample complexity of SMIX()\) is much better than
QTRAN, as the latter has to estimate an expectation over
the high dimensional joint action space of all agents, which
is computationally challenging even in the case of a small
number of agents.

The general training procedure for SMIX(\) is provided
in the Supplementary. It is worth noting that our method of
training a CVF is a general method and can be easily applied
to other CTDE methods, such as VDN (Sunehag et al. 2018),
COMA (Foerster et al. 2018), and even fully decentralized
methods, such as IQL (Tan 1993) (cf., Figure 2).

4 Analysis

In this section, we give the convergence analysis of the
proposed SMIX(\) algorithm, by first building the connec-
tion between SMIX()) and a previous method named Q(\)
Harutyunyan et al. (2016), originally proposed for off-policy
value function evaluation under single-agent settings.
Denoting G™ as the A-return estimator (cf., (6)) for the
action value of the target policy 7, the goal of an off-policy
method is to use the data from the behavior policy p to cor-
rect G™, in a way such that the following criterion is met,

Er[G7] = B[], ©)

where GH*'™ is the corrected return of off-policy data.

The most commonly used method for calculating the
GHT is the importance sampling (IS) method, in which
the importance sampling ratio p; plays the role for off-
policy correction. In SMIX(), it is further relaxed as: p; =

Zgzl‘:g = 1, then corresponding to (4), the update rule of

SMIX(A) can be expressed as,

QSMIX (Te,a0) ¢ QSMIX (7e,a:) + E,

> (11 )]
k=t \i=t+1
o = (ris +1EL Q™M (T, ) = QM (m 1))
(10)
In contrast with the multiplicative operation for off-policy
correction, an additive-type operation can also be used
(Harutyunyan et al. 2016). In particular, an additive correc-
tion term, derived from (9), is added to each reward when
calculating G#*'™. The major advantage of this additive cor-
rection is that there is no product of the ratio and no the
joint policy 7 (a|7) involved, hence completely bypassing
the limitations of the IS method 3. Specifically, the updating
rule of Q(A) method is (Harutyunyan et al. 2016):

5 (11)¢]

k=t \i=t+1

Q¥ (r1,1)  Q¥V(71,a,) +En

o = (Tkﬂ +1ER Q¥ (Tip1,) — QU ("’k»ak))

(11)
By comparing (10) and (11), we see that our SMIX())
and off-policy () are essentially equivalent except that
SMIX()) calculates E,,QMX (7,1,-) in 7 while Q(\)
calculate EQ%W (4 1,-) in 67. Note that SMIX()) is a
biased estimation of Q™ (7, a), while () unbiased.

The following theorem states that when 7r and p are suffi-
ciently close, the difference between the output of SMIX()\)
and Q()) is bounded. This implies that SMIX() is consis-
tent with the () algorithm.

Theorem 2. Suppose we update the value function from

QMX (1 a,) = Q;?()‘)(Tt,at), where n  represents

the n-th update. Let ¢ = max, ||7(:|T) — p(|7)]1,
M = maXTa\Qn ’\)(T,a)|. Then, the error between
SMIX

) (T¢,a;) and Qn+1 (1¢,a;) can be bounded by the ex-
pression:

e
g M. (12)

| SMIX

1 (Ter &) — Qn+1 (Te,a) [ < T

The proof of this theorem is provided in the Supplementary.
This theorem indicates that SMIX(\) has the similar con-
vergence property to Q(A) under some mild conditions. The
following theorem presents the convergence property of the
@ () method (Harutyunyan et al. 2016).

Theorem 3. (Harutyunyan et al. 2016) Consider the se-
quence of Q-functions computed according to (11) with fixed
policy w and p. Let ¢ = max, ||7(:|7) — p(:|7)|1. If
Xe < =2 then under the same condition required for the
convergence of TD(\) we have, almost surely:

lim QS(/\)(Ta a) = Qﬂ(Tv a)'
n—oo

3But under the condition that the behavior policy p should be
close to the target policy 7r, which under our experience replay
setting should not be a problem (cf., Fujimoto, Meger, and Pre-
cup (2019)).



By Theorem 2 and Theorem 3, we know that SMIX(\)
has convergence guarantee to current policy’s value function
Q™ (7,a) if  and p are sufficiently close. This could mean
a lot to a MARL algorithm, as it bypasses major drawbacks
of importance sampling.

The above analysis shows that SMIX() and Q(\) have
similarities both formally and analytically. However, when
applying them to the problem of MARL, their computational
complexity is fundamentally different. This is because to
calculate the additive error correction term, Q()) has to es-
timate the expectation over target policy 7r in (11), but this is
unrealistic in the multi-agent setting since the dimension of
the joint action space grows exponentially with the number
of agents. By contrast, the SMIX(\) relies on the experience
replay technique to compute the expectation in (10), whose
computational complexity grows only linearly with the num-
ber of training samples, regardless of the size of joint action
space and the number of agents involved. Such scalability
makes our method more appropriate for the task of MARL,
compared to the Q(\) and QTRAN.

Finally, before ending this section, we summarize some
of the key characteristics of QMIX and SMIX()) in Table 1.

Property QMIX SMIX()\)
Constraint in the learning phase ~ Centralized greedy assumption ~ No assumption

Uses experience replay v
Handles non-Markovian domains X v
Uses A-return X v
Stable point of convergence Q* Q™

Table 1: The comparison of QMIX and SMIX(\).

5 Experiments

In this section, we first describe the environmental setup and
the implementation details of our method. Then we give the
experiment results and ablation study.

Environmental Setup and Implementation Details

We evaluate the algorithms on the StarCraft Multi-Agent
Challenge (SMAC) (Samvelyan et al. 2019) benchmark,
which provides a set of rich and challenging cooperative
scenarios. We focus on the decentralized micromanagement
problem in the combat scenarios, in which each of the learn-
ing agents controls an individual army unit. At the beginning
of each episode, two groups of units are placed on the map
with random initial positions within groups. The units of the
two groups are controlled by decentralized agents and built-
in heuristic game Al bot respectively. The difficulty of the
built-in Al bot is set to very difficult in experiments. Each
agent can only receive local observations within its sight
range. Global state information is available during train-
ing. Actions for each agent contain move [direction],
attack[enemy id], stop and noop. Agents receive a
joint reward equal to the total damage dealt on the enemy
units. We use the default setting for the reward. Refer to
Samvelyan et al. (2019) for full details of the environment.
We consider the following 3 types of scenarios: (A) ho-
mogeneous and symmetric units: 3 Marines (3m), 8 Marines
(8m); (B) heterogeneous and symmetric units: 2 Stalkers and

3 Zealots (2s3z), 3 Stalkers and 5 Zealots (3s5z); (C) asym-
metric units: 3 Stalkers vs. 3 Zealots (3s_vs_3z), 2 Stalkers
vs. 1 Spine Crawler (2s_vs_1sc).

We use test win rate as the evaluation metric, which is
proposed in Samvelyan et al. (2019) and evaluated in the
following procedure: we pause training after every 20000
timesteps and run 24 independent test episodes with each
agent performing greedy action selection in a decentralized
way. Test win rate refers to the percentage of episodes where
the agents defeat all enemy units within the time limit.

SMIX(\) adopts the same architecture as QMIX (Rashid
et al. 2018), except that SMIX(\) performs the centralized
value function estimation with A-return (A = 0.8) calculated
from a batch of 32 episodes. The batch is sampled uni-
formly from a replay buffer that stores the most recent 1500
episodes. We run 4 episodes simultaneously. See Supple-
mentary for more details.

Comparative Evaluation

We compare our SMIX(\) with state-of-the-art algorithms
QMIX (Rashid et al. 2018) and COMA (Foerster et al.
2018), which currently perform the best on the SMAC
benchmark. VDN (Sunehag et al. 2018) and IQL (Tan 1993)
are chosen as baselines for comparisons.

The results of all methods are plotted in Figure 2. Over-
all, SMIX()\) significantly outperforms all the comparison
methods in heterogeneous or asymmetric scenarios (i.e.,
scenarios except 3m and 8m), while performing compara-
bly to them in homogeneous and symmetric scenarios (i.e.,
3m and 8m) both in terms of the learning speed and fi-
nal performance. Especially in 3s5z, SMIX()) (solid red
line) achieves nearly 90% win rate, while the best compar-
ison method QMIX (dotted red line) achieves about only
70% test win rate. In 2s_vs_Isc and 3s_vs_3z, SMIX()\) also
requires less than half the number of samples of QMIX
and other comparison methods to reach the asymptotic per-
formance. The superior performance of SMIX(\) using A-
return with off-policy episodes presents a clear benefit over
the one-step estimation of QMIX.

Generalizing SMIX()\) to Other MARL Algorithms

SMIX(A) focuses on CVF estimation with A-return using
off-policy data. This method could ideally be generalized to
other MARL algorithms incorporating critic estimation.

To demonstrate the benefits of our approach, we gener-
alize SMIX()) to the following algorithms: COMA, VDN
and IQL. We achieve these by replacing their original value
function estimation procedure with ours (see Section 3).
Then we get three new algorithms called SMIX(\)-COMA,
SMIX(A)-VDN and SMIX(M)-IQL respectively. Figure 2
gives the comparisons between our methods and their coun-
terparts (we also provide quantitative results in Supplemen-
tary). Overall, most of the extended methods (solid line) per-
form on par or significantly better than their counterparts (in
the same color but dashed line) in most scenarios both in
terms of the final win rate and learning speed.

SMIX(A)-VDN considerably improves the performance
of VDN. Especially in difficult scenarios such as 3s5z,
SMIX(A)-VDN achieves about 75% final win rate, which
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Figure 2: Test win rates for our methods (SMIX()\), SMIX()\)-COMA, SMIX(\)-VDN, SMIX(A)-IQL) and comparison meth-
ods (QMIX, COMA, VDN, IQL) in six different scenarios. The performance of our methods and their counterparts are shown
with solid and dashed lines of the same color, respectively. The mean and 95% confidence interval are shown across 10 inde-

pendent runs. The legend in (a) applies across all plots.

is more than twice as that of VDN (nearly 30%). Such im-
provement may be contributed to A-return and the inde-
pendence of the unrealistic centralized greedy assumption
during learning. Furthermore, we find that SMIX(\)-VDN
performs even better than QMIX in most scenarios. Note
that VDN uses linear combination of decentralized Q-values
(and so does our SMIX(A)-VDN), whereas QMIX extends
VDN by combining decentralized Q-values in a non-linear
way, which allows it to represent a richer class of centralized
value functions. However, our results indicate that the per-
formance bottleneck of VDN may not be the limited repre-
sentational capacity, but how to effectively balance the bias
and variance in the estimation of CVFE.

Similar performance improvements can also be seen in
COMA, which can be considered as a success of utilizing the
oft-policy data, as COMA also adopts A-return but uses only
the on-policy data. Another observation is that our method
also works for IQL, which is a fully decentralized MARL
algorithm. This suggests that our method is not limited to
centralized value function estimation but also applicable to
decentralized cases.

It is worth mentioning that the extended methods may not
make improvements if the original methods do not work,
e.g., COMA, IQL, and their counterparts do not work in 3s5z
(Figure 2e). The reason may be that the main limitations of
COMA and IQL on 3s5z do not lie in the inaccurate value
function estimation, but rather in other problems, e.g., scal-
ing not well to large number of agents and multi-agent credit

assignment problem.

Ablation Study

We perform the ablation experiments to investigate the ne-
cessity of balancing the bias and variance and the influence
of utilizing the off-policy data.

A-Return vs. n-Step Returns. To investigate the necessity
of balancing the bias and variance in multi-agent problems,
we adjust the parameter A\, where larger A corresponds to
smaller bias and larger variance whereas smaller ) indicates
the opposite. Especially, A = 0 is equivalent to one-step re-
turn (corresponding to the largest bias and the smallest vari-
ance); A = 1 is equivalent to Monte-Carlo (MC) return (oco-
step, corresponding to the smallest bias and the largest vari-
ance). We also evaluate a variant named SMIX(n), which
uses n-step return in place of A-return as the TD target, i.e.,
Yot =3 Y T e + Y QT A 07).

As Figure 3a and 3d show, SMIX(\) with A = 0.8 consis-
tently achieves the best performance in selected maps. The
method with A = 1 (MC) performs the worst in 3s5z, while
A = 0 (one-step) performs the worst in 2s_vs_lsc. These
results reveal that the large variance of MC return or large
bias of one-step return may degrade the performance. Sim-
ilar results could also be seen in SMIX(n) (Figure 3b and
3e), where SMIX(n) with n = 4 performs the best in 3s5z,
while the one with n = 16 performs the best in 2s_vs_Isc.
It is not easy to find the same n for SMIX(n) as SMIX(A)
which sets A = 0.8 and performs consistently well across
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Figure 3: Sensitivity of SMIX(\) to selected hyperparameters in two different scenarios. The mean and 95% confidence interval
are shown across 10 independent runs. The performance of the baseline (QMIX) is shown as a dashed red line. (a) and (d) show
the sensitivity of SMIX() to the value of \; (b) and (e) show the results using n-step TD with different backup steps; (c) and
(f) show the comparison between SMIX(\) and its on-policy version.

different maps. In summary, it seems necessary to balance
the bias and variance in multi-agent problems, and A-return
could serve as a convenient tool to achieve such a balance.

Incorporating Off-Policy Data vs. Pure On-Policy Data.
To investigate the influence of utilizing the off-policy data,
we perform experiments to compare SMIX()) against its on-
policy version by scaling the size of the replay buffer. The
on-policy version of SMIX(\) corresponds to SMIX(\) with
buffer size b = 4 (the most recent 4 episodes in the replay
buffer are all on-policy data), while the off-policy SMIX()\)
are the ones with buffer size b > 4, where the percentage of
off-policy data increases with the size of the replay buffer.

As shown in Figure 3¢ and 3f, all the variants of SMIX()\)
incorporating off-policy data (b > 4) perform better than the
on-policy version (b = 4) in selected scenarios. Notably, the
performance of SMIX () with b = 1500 is almost twice that
of the on-policy version both in terms of the final win rate
and learning speed in 3s5z. Note that 355z (8 units) map is
more complex than 2s_vs_1sc (2 units) in terms of the num-
ber of agents, and consequently the joint action space of the
former is much larger. However, more off-policy data does
not always lead to better performance, and the performance
may even degrade once the buffer size exceeds a threshold
value. That is because the buffer size is corresponding to the
€ in Theorem 2 which measures the mismatch between the
target policy 7r and the behavior policy . A smaller buffer
size makes SMIX()\) less sample efficient but a larger buffer
size results in a looser error bound which biases the CVF

estimation. In practice, a moderate buffer size of 1500 could
be a good candidate for a range of tasks.

6 Conclusions

One of the central challenges in MARL with CTDE settings
is to estimate the CVF. To address this issue, we present
the SMIX(\) approach. Experimental results show that our
approach significantly improves the state-of-the-art perfor-
mance by enhancing the quality of CVF through three con-
tributions: (1) removing the greedy assumption to learn a
more flexible functional structure, (2) using off-policy learn-
ing to alleviate the problem of sparse experiences and to im-
prove exploration, and (3) using A-return to handle the non-
Markovian property of the environments and balance the
bias and variance. Our results also show that the proposed
method is beneficial to other MARL methods by replacing
their CVF estimator with ours. Last but not least, our anal-
ysis shows that SMIX()\) has nice convergence guarantee
through off-policy learning without importance sampling,
which brings potential advantages in multi-agent settings.
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Supplementary

A. Proof of Theorem 1
Theorem 1. For QMIX, ifaa%ﬁt >0forie€ {1,2,---,N}, then we have
max Qior(T,8) = Qrot (7', argmax,: Q*(t',a'),--- ,argmax,~ QN (N, aN)) (13)

Proof. For QMIX, we have R
Qtot(Ta a) = Q (Q1<T17a1>7 ceey QN(TN7 a/N>) )

where Q is the mixing network and a = (a1, ..., ay). Similarly, we have {%{- > 0 and
Qtot (’7’, argmax Ql(Tl, al), -, argmax,n QN(TN, aN)) = Q (ma}x Ql(Tl, al), ..., max QN(TN7 aN)> .
a a™
Since 22 > 0 given (a? a™), we have
ag7 = 0, so..,at),

QQ (. Q). QN0 £ Q (max @ (7). QP ) QYY) ) orany o

Similarly, given (a',...,a*"t a**1, ... a"), we have

Q (Qi(rh,a"),...,Q ", db),....QN(+N,a™)) < Q (Ql(Tl,al) maxQ (7%, a"), ...,QN(TN,aN)> for any a”.

Finally, for any (a*,...,a"), we have
Q (Q'(rY,a"),...,QN (N, a™))
< Q (malule(Tl,al) maXQ (7%, a%), Qg(TS,as),...,QN(TN,aN)>
<

Q <ma}xQ1(Tl7a ), maXQ (7%,a%),.. ,m%XQN(TN,aN)> .
Therefore, we obtain

maXNQ (Ql(rl,al),...,QN(T",a")) =Q <maXQ (rh,ab), maXQ (7%,a?), .. ,m%XQn(TN,aN)> ,

al,...,a

which is the specific form of (13) for QMIX. O]
B. Proof of Theorem 2

Theorem 2. Suppose we update the value function from QSMX (7, a;) = QY » (T+,a¢), where n represents the n-th update.
Let € = max, | (|7) — p(-|7) ||, M = max, o QL™ (7,)|. Then, the error between SMIX (T4, a¢) and Qg&) (T¢,a) can
be bounded by the expression:

ey
1— My

| SMIX

1 (Tt,at) — Qn+1 (Te,a) | < M. (14)

Proof. First, we have,
07 = 07| = [VEu@M™ (7441, ) — 1ExQEW (1111, -) |
=1 Zﬂ(ahtH)QiMIX (Teg1,7) — Zﬂ'(a|7't+1)Q§(’\) (Teg1,0) | < yeM.
a

Thus,

‘Qil\flx (Tt; at) - Q;?J(r)i) (Ttaat) | =

Therefore, the expression (14) holds. OJ



Algorithm 1 Training Procedure for SMIX(\)

1: Initialize the behavior network with parameters 6, the target network with parameters 6, empty replay buffer D to capacity
Np, training batch size b

2: for each training episode do

3 for each episode do

4 fort=1to7T —1do

5: Obtain the partial observation o; = {o},--- , 0¥} for all agents and global state s;

6 Select action a} according to e-greedy policy w.r.t agent i’s decentralized value function Q° fori =1,--- | N
7 Execute joint action a; = {a',a?,--- ,a’V} in the environment

8 Obtain the global reward r, 1, the next partial observation o}_  for each agent i and next global state ;1

9: end for
10: Store the episode in D, replacing the oldest episode if |D| > Np
11: end for
12: Sample a batch of b episodes ~ Uniform(D)

13: Calculate A-return targets y£* = (1-X) >, A"’ngn), where Gg") =11+ yrirot Y Ern Q (Trgn, @pgn; 07)

14: Update § by minimizing Y°1—," S0_, [(41°" — QF,(7, a;6))?]
15: Replace target parameters 6~ < 6 every C episodes
16: end for

C. Algorithm
D. Implementation Details

The agent network consists of a 64-dimensional GRU (Chung et al. 2014). One 64-dimensional fully connected layer with ReLU
activation function before GRU is applied for processing the input. The layer after GRU is a fully connected layer of 64 units,
which outputs the decentralized state-action values Q%(7%, -) of agent i. All agent networks share parameters for reducing the
number of parameters to be learned. Thus the agent’s one-hot index ¢ is concatenated onto each agent’s observations. Agent’s
previous action is also concatenated to the input. The target network is updated after every 200 training episodes. We use
RMSprop optimizer with learning rate 0.0005 and o« = 0.99 without weight decay or momentum during training. We perform
independent e-greedy for exploration. € is annealed linearly from 1.0 to 0.05 across the first 50k timesteps for all experiments.
The discount factor is set to v = 0.99. The architecture of the mixing network is the same as in Rashid et al. (2018). Actually,
all the settings of SMIX(\)’s parameters are kept the same as those of QMIX for fair comparison, except that SMIX(\) has an
extra parameter A and uses smaller buffer size.

E. Additional Results
We provide quantitative comparisons of our methods and their counterparts in Table 2.

Algorithms 3m 8m 283z 3s5z 2s_vs_lsc 3s_vs_ 3z
mean £ std median mean + std median mean & std median mean £ std median mean + std median mean & std median

SMIX(M) 99 (+0) 99 91 (£3) 90 90 (+4) 91 61 (£11) 62 94 (£5) 96 84 (£14) 88
QMIX 95 (£3) 95 90 (£3) 89 81 (£7) 81 16 (£12) 11 39 (£19) 45 15 (£20) 9
SMIX()\)-COMA 93 (+8) 97 92 (+2) 93 44 (+18) 47 0 (+0) 0 97 (+4) 100 0 (£0) 0
COMA 92 (£2) 93 90 (£2) 91 24 (+6) 24 0 (+0) 0 77 (£11) 78 0(+0) 0
SMIX(M\)-VDN 98 (+0) 98 94 (+3) 93 78 (£14) 79 29 (+12) 26 96 (+2) 97 67 (£25) 83
VDN 95 (£2) 95 86 (£5) 87 64 (£16) 71 1(£2) 0 86 (£8) 88 27 (£9) 27
SMIX(M)-IQL 91 (+4) 94 80 (£5) 79 32 (£8) 31 0 (+0) 0 92 (+6) 94 35 (£21) 31
IQL 83 (+9) 86 59 (£15) 58 14 (£10) 13 0 (+0) 0 51(£22) 54 5(+4) 6

Table 2: Mean, standard deviation, and median of test win rate percentages after training for 1 million timesteps in six different
scenarios. The highest results are in bold. Our methods (SMIX(\), SMIX()\)-COMA, SMIX()\)-VDN, SMIX()\)-IQL) perform
on par or significantly better than their counterparts in terms of the learning speed across all scenarios.



