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Overview

= The paradigm of centralized training decentralized execution

(CTDE) has become popular in multi-agent reinforcement
learning (MARL).

» Qur proposed method SMIX(\), built upon QMIX, aims to
learn a stable and generalizable centralized value function
(CVF) for CTDE-type MARL methods.

Key ideas:

= Remove the unrealistic centralized greedy assumption during
the learning phase;

= Adopt an experience-replay style off-policy training for better
sample efficiency without importance sampling.

» Use A-return to balance the trade-off between bias and variance
and to deal with the environment’s non-Markovian property:;

Relaxing the CGB Assumption in Learning

What’s CGB? To learn a generalizable CVF, current methods
generally adopt the following centralized greedy behavior (CGB)
assumption:

([ argmaxQ’ (71, at)
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How to relax? Use SARSA-style updating rule instead of Q-
learning to avoid the CGB assumption in Eq. (1).

Whats the problem? SARSA is an on-policy method and only
considers one-step return.

Off-Policy Learning in Multi-Agent Settings

Denote behavior policy as ¢ and the target policy as 7, the policy
evaluation strategy can be expressed as follows:

Q(r,)  Q(r.a) + E, |3~ (ﬁpi) i (2)

>0 i=1

where

ZT = 11+ YELQ (Tt+1> ) — (Tt7 at) (3)

We try to achieve off-policy learning without importance sam-
pling in multi-agent settings because:

IS without IS (ours)
pi pi = ZEZ :; pi = 1.0
variance

large low
calculate 7 (a;|7;) impractical practical

Table: Off-policy with/without Importance Sampling (IS) in multi-agent settings.
m(a;|T;) = [[] 7/ is the joint policy of all the agents, and calculate this quantity is
impractical when the number of the agents n is large.

Though relaxing p, = 1.0 introduces bias, it’s practical due to

= Off-policy experiences tend to be heavily correlated to the
current policy (Fujimoto, Meger, and Precup 2019).

» We prove that SMIX()\) has the similar convergence property
to Q()\) if m and p are sufficiently close.

= We keep a relatively small buffer size to ensure m and p are
sufficiently close.

A-Return

We use the A-return as the TD target estimator:
O
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where ng) =11+ Y0+ -+ Y ERQ (Trin, @s0p; 07) is n-step return
and 6~ are parameters of the target network.

Plugging this into Eq. (2) and setting p; = 1.0 for all i, we have
the following update rule,

Q(1,a) < Q(1,a) +

Loss function:

D Wt (G? — Q (3, at)) (5)

t>0
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Algorithm 1 Training Procedure for SMIX(\)

1: Initialize the behavior network with parameters €, the target network with parameters 6~ , empty replay buffer D to capacity
Np, training batch size b
2: for each training episode do
for each episode do
fort=1to7 — 1do
Obtain the partial observation o; = {o;,--- , 0 } for all agents and global state s,
Select action a? according to e-greedy policy w.r.t agent ¢’s decentralized value function Q* fori =1,--- , N
Execute joint action a; = {a',a?,--- ,a” } in the environment
: Obtain the global reward 1, the next partial observation o}_ ; for each agent i and next global state s
9: end for
10: Store the episode in D, replacing the oldest episode if |D| > Np
11: end for
12: Sample a batch of b episodes ~ Uniform(D)

13:  Calculate A-return targets 5/ = (1—X) °°, A" 1G{™, where G\ = ry1+ripot - 47" ErQ (Trims rpn; 07)

z

14: Update # by minimizing 23:11 Z?:l [(yf,ﬂt — Qe (T, &; 9))2}

15: Replace target parameters 0~ <— 6 every C' episodes
16: end for
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Figure 2: Test win rates for our methods (SMIX(\), SMIX(A)-COMA, SMIX(A)-VDN, SMIX(A)-IQL) and comparison meth-
ods (QMIX, COMA, VDN, IQL) 1n six different scenarios. The performance of our methods and their counterparts are shown
with solid and dashed lines of the same color, respectively. The mean and 95% confidence interval are shown across 10 inde-
pendent runs. The legend in (a) applies across all plots.

« SMIX()\) outperforms most comparison methods both in terms
of the learning speed and final performance.

= Our CVF estimation procedure is a general method. Existing
CTDE-type methods can achieve performance improvement by
incorporating our CVF estimation procedure.




